
Biomedical Signal Processing and Control 77 (2022) 103828

Available online 20 May 2022
1746-8094/© 2022 Elsevier Ltd. All rights reserved.

3D convolutional neural networks with hybrid attention mechanism for 
early diagnosis of Alzheimer’s disease 

Zhiwei Qin a, Zhao Liu b,*, Qihao Guo c, Ping Zhu a,* 

a State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 
b School of Design, Shanghai Jiao Tong University, Shanghai 200240, China 
c Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China   

A R T I C L E  I N F O   

Keywords: 
3D convolutional neural networks 
Hybrid attention mechanism 
Alzheimer’s disease 
Early diagnosis 
Magnetic resonance image 

A B S T R A C T   

As a non-invasive and radiation-free imaging technique, magnetic resonance imaging (MRI) can intuitively 
display the three-dimensional tissues and structures of human brain, showing the great prospect in the early 
screening and diagnosis of Alzheimer’s disease (AD). MR image processing on the basis of deep learning methods 
has aroused increasing attention, and the core of this type of method is to construct an efficient model to 
recognize and extract the key features of the images. In this article, a 3D Residual U-Net model incorporating 
hybrid attention mechanism (3D HA-ResUNet) is proposed for the auxiliary diagnosis of AD using 3D MR images. 
The backbone classification model consists of an up-sampling branch network, a down-sampling branch network, 
and intermediate connection residual blocks. The hybrid attention mechanism exploits the advantages of both 
channel and spatial attention, and is merged with the skip connection of the backbone classification model. In the 
binary classification task of AD vs. normal cohort (NC) on the ADNI dataset, the addition of the hybrid attention 
module helps improve accuracy, sensitivity, precision, F1 score and G-mean by 4.88%, 10.52%, 0.94%, 6.17% 
and 5.60%, respectively. Furthermore, the proposed method demonstrates superior generalization ability 
compared with other state-of-the-art methods. The 3D HA-ResUNet was further tested in the mild cognitive 
impairment (MCI) subtype classification task on the local dataset and achieved 100% of accuracy. In addition, an 
attribution-based visual interpretability method is employed to reveal the regions and features that the proposed 
model focuses on for classification. The visual interpretations combined with domain knowledge are capable of 
providing a valuable reference for physicians’ clinical decision-making.   

1. Introduction 

Alzheimer’s disease (AD) is a progressive and irreversible neurode-
generative disease, and the leading source of dementia worldwide. 
Clinically, AD is characterized by comprehensive dementia manifesta-
tions such as memory impairment, language disorder, and executive 
dysfunction [1,2]. The pathogenesis of AD is still under study and no 
consistent conclusion has been reached yet, and no effective drugs and 
treatments have been found to cure AD diagnosed patients. Thus, early 
screening, assessment and intervention are critical to enhancing pa-
tients’ quality of life and prognoses. With the rapid development of 
medical imaging technology and equipment, neuroimaging has become 
one of the most intuitive and reliable methods for the detection of AD. 
Among them, magnetic resonance imaging (MRI) is a non-invasive and 
radiation-free imaging technique that can display the three-dimensional 

images of brain tissues, and intuitively provide the information of tissue 
lesions. MRI has become an effective approach for clinical detection of 
biomarkers and recognition of brain atrophy patterns in the progression 
of AD [3]. In order to optimize the traditional manual film-reading 
process, avoiding a lot of time consumption and over-reliance on the 
expert’s personal knowledge and experience, MRI scans processing 
methods based on general machine learning and deep learning have 
been heavily studied in recent years. 

As one of the most prevalent research directions in machine learning, 
deep learning has the advantages of learning the inherent laws and 
representation levels of data, which makes it closer to the goal of arti-
ficial intelligence. At the same time, deep learning models can be trained 
end-to-end, which enables such techniques to be quickly deployed to 
specific applications in various fields. Given the difficulty of early AD 
diagnosis using 3D MR images, incorporating attention mechanism into 
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deep learning technique can be an effective approach. Introducing 
attention mechanism into deep learning model is not only a very 
interesting idea, but also a work that needs further exploration and 
improvement. In this work, we proposed a 3D pyramidal hierarchical 
deep learning model incorporating hybrid attention mechanism (3D HA- 
ResUNet) for the early diagnosis of AD based on 3D MR images. 

The rest of this article is organized as follows: Section 2 summarizes 
the related work on AD diagnosis based on MR images, as well as the 
motivation and contributions of this work. Section 3 elucidates the 
attention mechanism and our proposed 3D HA-ResUNet model. The 
following Section 4 introduces the datasets, experimental settings and 
the classification results of different methods. Section 5 delivers a visual 
interpretation of the proposed model and a further comparison with 
some state-of-the-art studies. Finally, Section 6 provides a conclusion of 
this article along with an outlook for future work. 

2. Related work 

In this section, general machine learning methods for MR image 
feature extraction and classification are first reviewed, followed by a 
summary of deep learning architectures. Furthermore, the setbacks of 
existing approaches, together with the motivation and contributions of 
the proposed 3D HA-ResUNet are presented. 

2.1. Machine learning methods 

Machine learning provides automatic classification techniques based 
on data science, which can be easily combined with the image feature 
processing methods in traditional medicine to form a complete analysis 
process. In the classification studies of AD stages using MR images, re-
searchers have used methods such as voxel-based morphometry to 
extract the image features (gray matter volume, white matter volume, 
cerebral cortical thickness, etc.), and input these numerical features into 
the classifier based on machine learning methods for further classifica-
tion [4]. Klöppel et al. [3] extracted the voxel value of gray matter 
segments from T1-weighted MR scans and selected support vector ma-
chine (SVM) as the classifier, which was robust to MR images produced 
by different scanning devices. Nayak et al. [5] used two-dimension 
discrete wavelet transformation (2D DWT) to extract MR image fea-
tures and probabilistic principal component analysis (PPCA) to select 
the significant features. The random forests approach was implemented 
to distinguish normal and diseased brains based on the feature set. 

Cerebral cortical atrophy, hippocampal atrophy and ventricular 
enlargement are the main manifestations of early AD [6], so the whole 
brain can be divided into regions of interest (ROI) according to medical 
prior knowledge, and the image features of the ROIs can be extracted for 
analysis. Zhang et al. [7] extracted multi-biomarker features (e.g., vol-
ume features) from the 93 ROIs of multimodal brain neuroimages and 
classified the features using the multi-kernel SVM classifier. Uysal and 
Ozturk [8] proposed that the volume atrophy of hippocampus is the 
most important indicator of AD, therefore they built a machine learning 
model based on the volume features of left and right hippocampus as 
well as the age and gender information to predict the diagnostic type of 
subjects. Although machine learning methods can perform automatic 
classification of numerical features, the operations required from image 
data to numerical data, such as feature extraction, feature selection and 
feature fusion, still need additional manual design of algorithms in most 
cases. 

2.2. Deep learning methods 

Deep learning techniques have become mainstream research tools in 
computer vision due to their advantages in high-dimensional data rep-
resentation [9–12], and have achieved satisfactory results in medical 
image analysis [13,14]. Compared to traditional image processing 
methods, deep learning has unique advantages: (1) as a data-driven 

feature learning algorithm, deep learning model can perform auto-
matic feature extraction through end-to-end training, greatly reducing 
manual workload; (2) the deep structure of deep neural networks can 
capture the interactions between abstract features; (3) in addition to 
feature extraction, feature selection and classification can also be ful-
filled in network training. As a representative technique of deep 
learning, convolutional neural networks (CNN) have been widely 
studied. 

2.2.1. CNN architectures and their developments 
The architecture of CNN greatly affects the feature extraction and 

classification performance of the model. Among various CNN architec-
tures, ResNet [12] provides a solution to the degradation problem of 
deep CNNs. Korolev et al. [15] proposed two 3D CNN architectures for 
brain MR image classification, i.e., plain CNN and residual CNN, which 
revealed the potential of deep learning models for end-to-end analysis of 
complex MRI data. Karasawa et al. [16] built a 3D CNN model with 36 
convolutional layers based on ResNet architecture. Liu et al. [17] 
established a multi-task CNN model for segmentation and feature 
extraction of brain MRI hippocampus, then learned the key features of 
the segmented hippocampus by building 3D DenseNet [18], and clas-
sified the AD status in combination with the two groups of features. This 
multi-model deep learning framework achieved better results than the 
single-model approach. 

U-Net [19] is another prevalent CNN architecture, which enables 
feature extraction and fusion at different scales through an encoder with 
down-sampling and a decoder with up-sampling. U-Net was originally 
proposed for segmentation of medical images and has been customized 
with different characteristics for different medical image processing 
tasks [20,21]. Fan et al. [22] proposed a U-Net style model for AD 
diagnosis, applied the vanilla U-Net to the classification of 3D MR im-
ages, and achieved good results in both binary and multi-class classifi-
cation. U-Net can be used as a classification method and combined with 
other image enhancement and feature extraction techniques. Ragupathy 
and Karunakaran [23] used fuzzy logic for brain MR image enhance-
ment and dual tree-complex wavelet transform for feature extraction, 
the features were input into U-Net CNN for classification. Maqsood et al. 
[24] also used fuzzy logic for edge detection and U-Net model for clas-
sification. From a broader perspective, U-Net architecture can be easily 
integrated with other meticulous designs to make the model more 
comprehensive. For example, different activation function in the 
network [25], Bayesian approach for handling probabilistic graphical 
model [26]. However, the application of these techniques in MR image- 
based AD diagnosis needs further research. 

2.2.2. Introducing attention mechanism into CNNs 
CNNs are designed to simulate the image reception and processing of 

the brain. Inspired by this biology, adding an attention mechanism 
similar to human visual system to CNN facilitates the identification of 
valuable information in the region of interest and improving the accu-
racy and efficiency of information processing. Therefore, research has 
been accruing to incorporate attention mechanisms in classification 
models to improve the models’ recognition capability of biomarker- 
related features in MR images. 

Jin et al. [27] proposed a 3D attention-based ResNet for AD diag-
nosis, which embedded the lightweight attention module into the orig-
inal ResNet architecture. Apart from improving the classification 
performance of the model, their work also made a beneficial exploration 
for visualizing the decision-making process of the deep learning model. 
Also based on ResNet architecture, Yu et al. [28] proposed a 3D spatial 
attention module which fused multi-scale spatial information of MRI 
brain scans from multiple branches. Zhang et al. [29] constructed a task- 
driven hierarchical attention network for AD classification. This 
framework consisted of a patch-based information sub-network gener-
ating a disease-related information map and an attention-based hierar-
chical sub-network extracting discriminative features with the help of 
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visual attention module and semantic attention module. 
In terms of U-Net architecture, R. Karthik et al. [30] introduced 

attention mechanism into 2D fully convolutional network (FCN) for 
segmentation of brain MR images. The attention block helped the model 
concentrate on salient features of the lesion region, resulting in a good 
improvement in segmentation. Hashemi et al. [31] made modifications 
in the loss function of the 2D CNN models, and compared the U-Net and 
attention U-Net in segmentation of multiple sclerosis lesion. The ex-
periments revealed that the attention gate in U-Net was helpful for the 
model to find the edges of the lesion area. Although U-Net approach 
combined with attention mechanism has achieved many successful cases 
in medical image segmentation, its direct application in the early diag-
nosis of AD based on MR images will still be a new attempt. 

2.3. Research gaps and motivation 

Our literature review triggered the conclusion that researchers have 
done extensive work in AD diagnosis based on MR image classification, 
and the related work has its distinctive characteristics. The current 
research work and areas for improvement are summarized as follows:  

(1) General machine learning methods are able to deliver automatic 
classification of numerical features, but the operations of feature 
extraction, selection and fusion still require additional manual 
design of algorithms. Besides, machine learning methods have 
difficulty handling 3D data such as MR images.  

(2) Deep learning methods provide the option of end-to-end learning, 
and transform the framework from 2D to 3D for handling 3D MR 
images. Nevertheless, a more comprehensive CNN architecture 
with pertinency designs needs to be further applied to the early 
diagnosis of AD. In addition, due to the complex characteristics of 
the brain structure and the difficulty of detecting early AD bio-
markers, adding attention mechanism to the 3D CNN framework 
can be a good choice. However, many of the existing deep 
learning approaches that incorporate attention mechanisms take 
advantage of spatial attention, which focuses on the spatial re-
lationships of features. Other types of attention, such as channel 
attention, have been less frequently introduced into relevant 
studies. Making full use of different attentions can help improve 
the performance of the model on brain MR image classification.  

(3) Although deep learning methods and attention mechanism have 
advantages in processing 3D MR images, their models are black 
boxes and the lack of interpretability limits their further appli-
cation in medical diagnosis. 

Many deep learning networks, such as ResNet [12] mentioned 
before, compress the feature maps to a small size in their deep layers, 
which is not suitable for visualizing the activation features, that is, not 
easily integrated with visual interpretability methods. To solve this 
issue, we designed a pyramidal hierarchical network with both down- 
sampling and up-sampling processes according to the U-Net architec-
ture [19], which can expand the feature map to the size of the original 
input image in deep layers of the network, while ensuring excellent 
classification performance. Considering the convolution of CNN inher-
ently models only the spatial information of the image but does not 
model the information between channels. The channel attention char-
acterizes the relationship between channels, which can enhance the 
feature detector useful for the current task and suppress the feature 
detector of little use according to the importance of the channels. 
Therefore, the combination of channel attention and spatial attention 
will be more conducive to the identification and localization of decision 
features. This article introduced efficient channel attention and spatial 
attention to construct a lightweight hybrid attention module that can be 
fused with the aforementioned classification model to further improve 
its performance. Moreover, an attribution-based visual interpretability 
method is employed to explain the inference process of the proposed 

model and make the black box more transparent. In general, the pro-
posed 3D Residual U-Net model incorporating with hybrid attention 
mechanism (3D HA-ResUNet) exhibits superior capabilities in brain MR 
image classification and a greater potential for model interpretation. 

2.4. Research contributions 

The main contributions of this study are as follows: 

(1) A 3D pyramidal hierarchical convolutional neural network con-
sisting of a down-sampling branch, an up-sampling branch and 
intermediate connection residual blocks is proposed to process 
3D brain MR images. The proposed model is capable of gener-
ating feature maps of the same size as the input image in its deep 
layers and achieving excellent classification performance.  

(2) A hybrid attention mechanism that fuses efficient channel 
attention and spatial attention is proposed in this article. The 
hybrid attention combines the advantages of both types of 
attention to obtain better feature recognition and location, which 
can be integrated with the basic classification model to further 
improve its performance. 

(3) A visual interpretability method based on attribution and se-
mantic explanations is applied to the inference process of the 
proposed model, making the deep learning model more trans-
parent and easier to be popularized in clinic. 

3. Methodology 

The framework of the proposed 3D HA-ResUNet is illustrated in 
Fig. 1, which includes down-sampling branch network, up-sampling 
branch network, intermediate connection residual blocks and hybrid 
attention modules. The proposed model receives the pre-processed 3D 
MR image as input and outputs the diagnostic type of the sample. 
Furthermore, an attribution-based visual interpretability method is used 
to reveal the regions and features that the proposed model focuses on for 
classification. 

3.1. Attention mechanism 

The human visual system is considerably complex. As an important 
part of this system, the human eye, although considered as a refined 
sense, has mostly low resolution and unclear imaging except for a small 
area called the fovea located in the inner part of the back of the eyeball. 
Thus, when the human brain receives external visual information, it 
controls several eye movements, called saccades, to glimpse the most 
conspicuous or task-relevant parts of the scene. The attention mecha-
nism in deep learning models is derived from this dynamic. Therefore, 
adding similar visual attention mechanisms to CNN is conducive to 
highlighting important information in the regions of interest and 
improving the accuracy and efficiency of information processing. 

Attention mechanism in deep learning has developed into many 
different types. According to the differentiability of attention, it can be 
classified into hard attention and soft attention [32]. Hard attention is a 
non-differentiable attention and the training process is usually accom-
plished through reinforcement learning. Soft attention can be differen-
tiated, and the weights of attention can be obtained by neural networks 
counting the gradients and learning from backward propagation. Ac-
cording to the attention domain, it can be divided into channel domain 
attention, spatial domain attention, layer domain attention, hybrid 
domain attention and temporal domain attention. The channel domain 
generally refers to the different channels of the neural networks and is 
concerned with the distribution of attention weights among different 
feature maps. The spatial domain emphasizes the distribution of atten-
tion weights within each feature map. The layer domain is commonly 
used for attention interactions between hierarchical feature maps of 
pyramidal network structure. The hybrid domain is a mixture of 
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different attention domains, and usually combines channel domain and 
spatial domain. The temporal domain attention can be considered as a 
special implementation of hard attention, which generally accompanies 
recurrent neural network (RNN) models. This study focuses on the 
channel and spatial domain attention mechanisms. 

3.1.1. Channel domain attention 
The channel domain attention mechanism is the weight assigned to 

the feature map of each channel in the network layer, which can be 
expressed by Equation 1: 

Fout
c = wcFin

c , c = 1, 2,⋯,C (1)  

where c denotes the c-th channel, wc is the attention weight of the c-th 
channel feature map, Fin

c and Fout
c are the c-th channel input and output 

feature maps respectively. 

3.1.2. Spatial domain attention 
Spatial domain attention mechanism describes how much attention 

the feature maps receive in different regions of space, and all feature 
maps share the same attention weight matrix. It can be expressed as: 

Fout
c = W◦Fin

c , c = 1, 2,⋯,C (2)  

where c denotes the c-th channel, Fin
c and Fout

c are input and output 

Fig. 1. Pipeline of the 3D HA-ResUNet.  

Fig. 2. Diagram of each attention block. (a) 3D channel attention block generates a 1D channel attention weight which has C elements. (b) 3D spatial attention block 
generates a 3D spatial attention matrix with a size of H × W × D. 
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feature maps of the c-th channel, W is the spatial attention weight matrix 
of the feature map whose dimension is consistent withFin

c . And ◦ repre-
sents the Hadamard product of two matrices of the same order. 

3.1.3. The proposed hybrid domain attention 
The hybrid domain attention mechanism in this study combines 

channel domain attention and spatial domain attention. Since each 
channel of the network is regarded as a feature detector, channel 
attention facilitates solving the issue of “what” features to focus on for 
the input image. While spatial attention focuses on distinguishing the 
spatial location of features (“where”), which is a supplement to channel 
attention [33]. Therefore, combining the attention of the two domains is 
expected to achieve a better feature recognition and localization effect. 
According to the data characteristics of this study, we proposed a hybrid 
attention module for 3D brain MR images, which contains a 3D channel 
attention block and a 3D spatial attention block to generate a 1D channel 
attention vector and a 3D spatial attention map, respectively. Fig. 2 il-
lustrates the calculation diagram of each attention sub-block. 

The 3D channel attention block was constructed based on the clas-
sical architecture of Squeeze-and-Excitation Networks (SENet) [34], 
which consists of squeeze, excitation and scale operations. The input 3D 
feature maps were squeezed into a 1 × 1 × C feature vector through 
global average pooling (GAP). Different from the original SENet, which 
utilizes two fully-connected layers to perform transformations of the 
feature vector, we employed 1D convolutional layer and sigmoid func-
tion to generate channel attention weight according to the design of 
ECA-Net [35]. Finally, the original input feature maps were multiplied 
with the channel attention vector to obtain new feature maps, which 
were assigned with per-channel weights. The calculation process of 3D 
channel attention can be expressed by the following equations: 

Wchannel = σ(Conv1D(GAP(Fin))) (3)  

Fout = WchannelFin (4)  

where Wchannel is 1 × 1 × C channel attention weight. GAP denotes global 
average pooling, Conv1D is 1D convolutional layer and σ represents 
sigmoid activation function. 

The 3D spatial attention block worked to generate a 3D attention 
matrix to emphasize different informative regions in a 3D feature map. 
The input 3D feature maps were transformed into two new feature maps 
through channel-wise average pooling and max pooling. The two feature 
maps were concatenated along the channel axis. A 3D convolutional 
layer was then applied on the concatenated feature map to generate 3D 
spatial attention matrix which contained the spatial attention weights 
assigned to the 3D feature maps. And the output feature map was the 
Hadamard product of each original input feature map and this spatial 
attention matrix. The 3D spatial attention block can be expressed as: 

Wspatial = Conv3D([AvgPool(Fin);MaxPool(Fin)]) (5)  

Fout
c = Wspatial

◦Fin
c , c = 1, 2,⋯,C (6)  

where Wspatial is 3D spatial attention matrix. AvgPool and MaxPool refer 
to channel-wise average pooling and max pooling, and [;] represents 
concatenation. Conv3D is 3D convolutional layer. ◦ represents the 
Hadamard product of two matrices of the same order. 

The channel attention block and spatial attention block were com-
bined in a sequential manner. Thus, the hybrid attention mechanism 
with channel-first order can be achieved by Eq. (7): 

Fout
c = Wspatial

◦(WchannelFin)c, c = 1, 2,⋯,C (7)  

3.2. Architecture of 3D HA-ResUNet 

Two main aspects were considered in the design of the classification 
network:  

(1) In order to improve the performance of the model on MR image 
classification. The low-level features after multiple down- 
samplings can provide the semantic information of the recogni-
tion target in the whole image, which is helpful for the category 
judgment of the target. The high-level features directly passed 
from the encoder to the same scale of the decoder through the 
skip connection can provide more refined features for classifica-
tion. The brain MR images used in our study have relatively fixed 
structure and clear semantics, and low-level features can provide 
this information. However, the boundaries of brain tissues in the 
images are blurred, so more high-resolution information is 
required for identifying.  

(2) The up-sampling network of the decoder can upscale the feature 
map to the size of the original input image, providing a basis for 
subsequent visual interpretation. For some classical deep neural 
networks, such as ResNet [12], their deep layers, especially the 
last convolutional layer, usually compress the feature map to a 
small size. When visualizing the feature maps output from these 
deep networks, many details will be lost if they are scaled up to 
the size of the original input image. Therefore, we designed a 
pyramidal hierarchical network according to the “down 
sampling-up sampling” quasi-symmetric architecture of U-Net 
[19], so that the feature map output from the deep layers can also 
maintain the size of the shallow layers. 

Fig. 3 demonstrates the architecture of the proposed model, which 
contains a U-Net backbone, residual blocks and hybrid attention mod-
ules. Relevant network structures were extended to 3D because of the 
need to process 3D data. 

3.2.1. 3D U-Net-like networks 
A U-Net-like network structure and pyramid hierarchical structure 

are the major structure characteristics of the proposed model. The left 
half of the networks works like a decoder, receiving input images and 
performing feature extraction at different scales by down-sampling. The 
left half includes an initial convolutional block and four down-sampling 
blocks. The initial convolutional block receives 3D MR image input and 
contains a 3D convolutional layer with 64 7 × 7 × 7 filters, batch 
normalization (BN) layer [36] and ReLU activation function. The down- 
sampling block includes two 3D convolutional layers with filter size of 3 
× 3 × 3, and a 3D average pooling layer which reduces the size of the 
feature map to one-half of the original size. The 64 × 64 × 64 input 
image becomes 4 × 4 × 4 feature maps after 4 down-sampling blocks. 
While the right half of the networks uses up-sampling to restore the 
feature maps to the size of the original input image. The right half 
consists of four corresponding up-sampling blocks and a final convolu-
tional block. The up-sampling block contains a 3D up-sampling layer 
and a 3D convolutional layer with filter size of 3 × 3 × 3. Each up- 
sampling block is followed by the proposed hybrid attention module 
and a residual block. The final convolutional block contains a 3D con-
volutional layer with filter size of 7 × 7 × 7 and a 3D global average 
pooling which compresses the 3D feature maps into a 1D feature vector. 
The predicted categories of the networks are finally output by the last 
fully-connected layer. 

3.2.2. Residual block 
Residual block acts as an intermediate connection bridge between 

the left and right halves of the networks. In order to further process the 
features output from down-sampling blocks, and provide more decision- 
informed features for up-sampling blocks, we implemented 7 residual 
blocks, each containing a 3D convolutional layer with filter size of 3 × 3 
× 3, a BN layer and ReLU activation. The features are fused by the re-
sidual connection to deal with the vanishing gradient problem in deep 
neural networks [12]. 

Z. Qin et al.                                                                                                                                                                                                                                      



Biomedical Signal Processing and Control 77 (2022) 103828

6

3.2.3. Hybrid attention module 
The proposed hybrid attention module can be well incorporated with 

the skip connection in U-Net. We applied the hybrid attention to both 
low-level and high-level features and fused them by means of the skip 
connection. In other words, the attention weights that are conducive to 
the work of the shallow network and deep network can be obtained 
separately. And concatenating these two types of features not only in-
tegrates low-level and high-level features, but also allocates attention in 
line with the network characteristics, so that the model can focus on 
more valuable information for different levels of features. Section 3.1 
describes the hybrid attention module, which includes a 3D global 
average pooling, a 1D convolutional layer and sigmoid activation 
function for the channel attention part, as well as the parallel average 
pooling and max pooling, concatenation operation and a 3D convolu-
tional layer for the spatial attention part. 

3.3. Visual interpretability method 

Although deep learning models have played an outstanding role in 
many tasks, the lack of interpretability limits their further application in 
some scenarios such as medical diagnosis. Interpretability emphasizes 
the capability to furnish human with logical rules or at least some crit-
ical elements of the rules related to the domain knowledge [37,38]. In 
this section, we utilized attribution-based interpretability method to 
explain the decision-making process of the proposed 3D Residual U-Net 
with hybrid attention mechanism (3D HA-ResUNet), aiming to make the 
black box more transparent. Here, we employed and extended the 
Gradient-weighted Class Activation Mapping combined with guided 
backpropagation (Guided Grad-CAM) [39] approach to fit our 3D CNN 
model. 

The gradient information flowing to the last convolutional layer in 
CNN model is able to reveal the importance of each filter for category 
recognition. For category n, the weight of the lth filter in the last 

Fig. 3. Architecture of the proposed 3D Residual U-Net with hybrid attention mechanism. 3D U-net-like networks consist of left branch, right branch and the residual 
blocks which acts as the connecting bridge. The left branch is a down-sampling process, while the right branch is the corresponding up-sampling process, the middle 
connection works on feature processing. The feature maps of different levels are fused after hybrid attention weighting. The specific structures of hybrid attention 
module and residual block are demonstrated in the right half of the figure. 
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convolutional layer is calculated as follows: 

αn
l =

1
Z
∑

i

∑

j

∑

k

∂yn

∂Al
ijk

(8)  

where yn denotes the gradient of the score for class n, Al is feature map 
activation and 1Z

∑
i
∑

j
∑

k represents 3D global average pooling. 
Subsequently, ReLU activation is performed on the weighted feature 

map to eliminate the influence of negative values to obtain the classi-
fication location map of class n: 

Ln
Grad− CAM = ReLU

(
∑

l
αn

l Al

)

(9) 

Finally, the Ln
Grad− CAM is element-wise multiplied with guided back-

propagation to acquire Guided Grad-CAM visualizations. The Guided 
Grad-CAM is not only class-discriminative, but also fine-grain. The 
application of the Guided Grad-CAM to the proposed 3D HA-ResUNet 
model will provide visual explanations for the MRI-based classification 
process. 

4. Experiments and results 

This section introduces the datasets used in this research and 
experimental settings. We also provide a description of the comparison 
methods and the classification results on ADNI dataset. The proposed 
method was further compared with some state-of-the-art studies re-
ported in the literature. The local MCI dataset was eventually applied to 
validate the ability of the proposed method for clinical application. All 
the experiments were implemented on 3.50 GHz CPU with 192 GB RAM, 
and NVIDIA Quadro P4000 8 GB GPU. 

4.1. Data and pre-processing 

The data used in this study was collected from two sources: the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http:// 
adni.loni.usc.edu/) and the local dataset of subjects with mild cogni-
tive impairment (MCI). As a longitudinal multicenter study, ADNI aims 
to detect and track AD at the earliest possible stage (pre-dementia) by 
means of clinical, imaging, genetic and biochemical biomarkers. In the 
ADNI dataset, T1-weighted structural MRI (sMRI) scans of AD and 
normal cohort (NC) were acquired. Since some subjects have longitu-
dinal data, i.e., images from different time points, we only selected the 
first data of each subject to prevent possible similarity between these 
images. The ADNI dataset includes 98 AD samples and 114 NC samples 
in total. 

In terms of the local dataset, MCI subjects were chosen as samples for 
their high probability of conversion to AD, which is critical for studying 
the early diagnosis of AD. The MCI subjects were further divided into 
three subtypes according to the results of neuropsychological assess-
ment. The neuropsychological assessment mainly involves three cogni-
tive domains: episodic memory domain, language domain and 
graphomotor speed/executive function domain [40–42]. The neuro-
psychological test methods used in each cognitive domain are specified 
in Table 1 and the detailed classification criteria for MCI subtypes are 
shown in Fig. 4 [40–42]. Subjects were diagnosed as aMCI for their 
impaired scores on both two measures within memory domain. The 
impaired score is defined as > 1 standard deviation (SD) below the age- 
corrected normative mean. sMCI indicates the subjects suffered 
impaired scores on both two measures within language domain. The 
impaired score is defined as > 1 SD below the education-corrected 
normative mean. And oMCI refers to impaired scores on both two 
measures within speed/executive function domain or one impaired 
score in each of the three cognitive domains. The impaired score of 
speed/executive function domain is defined as > 1 SD below the age and 
education co-corrected normative mean. Based on the above criteria, a 

total of 43 aMCI samples, 46 sMCI samples and 5 oMCI samples were 
collected in the local MCI dataset. Due to the small sample size of oMCI, 
this study mainly focused on the classification of aMCI and sMCI. 

The raw sMRI data were pre-processed before being fed into the 
proposed model. A general pre-processing procedure was conducted 
based on Python. Skull-stripping was performed on all data through a 
trained U-Net model. The 3D MR images were then cropped to remove 
the redundant background parts. And they were resized to 64 × 64 × 64, 
which was the input data size of the proposed model. Finally, the 3D 
data were normalized by subtracting their mean and dividing by their 
standard deviation. 

4.2. Experimental settings 

The proposed model was experimented in the binary classification 
task of distinguishing AD and NC based on ADNI dataset. Additionally, 
the local MCI dataset was used to further verify the proposed method. 
For both the ADNI and MCI datasets, the samples were divided into 
training and test sets in the ratio of 8:2, where 10% of the training set 
was further divided into the validation set. Thus, there were 154 training 
samples, 17 validation samples and 41 test samples in ADNI dataset, 64 
training samples, 7 validation samples and 18 test samples in MCI 
dataset. The experiments were conducted in the Keras environment with 
TensorFlow as the backend. After our numerical experiments and pa-
rameters optimization, Adam solver [43] was implemented to optimize 
network training with the initial learning rate of 0.0001. We used the 
validation error to monitor the training process. When the validation 
error of the model has not decreased for 3 consecutive epochs, the 
learning rate will be multiplied by a scaling factor of 0.5 until the 
minimum learning rate of 1e-5 is reached. The training epoch was set to 
30 and the batch size was set to 2. 

The performances of the classification models were evaluated by 
means of some common metrics like Accuracy (ACC), Sensitivity (SEN), 
Specificity (SPE) and Precision (PRE): 

ACC =
TP + TN

TP + FP + TN + FN
(10)  

SEN =
TP

TP + FN
(11)  

SPE =
TN

FP + TN
(12)  

PRE =
TP

TP + FP
(13)  

where TP represents true positive, TN represents true negative, FP means 
false positive and FN means false negative. Among these metrics, SEN is 
also known as true positive rate and SPE is known as true negative rate, 
they are crucial indicators in medicine. 

Furthermore, to perform a more comprehensive evaluation of the 
model, F1 score and G-mean metrics are also considered in this work. F1 
score is the criterion for integrating Precision (PRE) and Sensitivity 

Table 1 
Cognitive function measures for MCI subtype classification.  

Cognitive domain Neuropsychological test method 

Episodic memory domain Rey Auditory Verbal Learning Test delayed 
recall 
Rey Auditory Verbal Learning Test delayed 
recognition 

Language domain Category Fluency Test (‘Animals’) 
Boston Naming Test 

Graphomotor speed/executive 
function domain 

Trail-Making Test Parts A 
Trail-Making Test Parts B 

These six neuropsychological test methods were chosen because they are 
routinely used to assess early cognitive manifestations of AD. 
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(SEN), while G-mean combines Sensitivity (SEN) and Specificity (SPE). 
F1 score and G-mean can be calculated by the following equations: 

F1 =
2 × PRE × SEN

PRE + SEN
(14)  

G − mean =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
SEN × SPE

√
(15)  

4.3. Ablation study 

This subsection aims to observe the effects of different attention 
mechanisms on the performance of the proposed 3D Residual U-Net 
model and to reveal the effectiveness of the proposed hybrid attention 
mechanism through ablation study. Both channel attention and spatial 
attention were introduced into this study and we have conducted 
separate experiments on each attention mechanism when acting alone 
and acting in combination. 

The results displayed in Table 2 demonstrate that the proposed 3D 
Residual U-Net (3D ResUNet for short) has an overall good performance 
in the AD and NC binary classification of the ADNI dataset. The original 
3D ResUNet framework is effective in solving this type of problem with 
the accuracy, specificity and precision of 87.80%, 95.45% and 93.75% 
respectively. Notably, the original 3D ResUNet achieved the tied highest 

specificity, but the lowest sensitivity, indicating that the model is more 
likely to predict the sample as NC. The introduction of attention 
mechanisms can improve this prediction tendency, the channel-based 
and spatial-based attention mechanisms had different effects on the 

Fig. 4. Diagnostic criteria for MCI subtypes. MCI can be divided into amnestic MCI (aMCI), semantic MCI (sMCI) and other MCI (oMCI) based on the impaired scores 
of different cognitive domains. 

Table 2 
Comparison of different attention mechanisms on the ADNI dataset (AD vs. NC).  

Model ACC 
(%) 

SEN 
(%) 

SPE 
(%) 

PRE 
(%) 

F1 
(%) 

G-mean 
(%) 

3D Residual U- 
Net  

87.80  78.95  95.45  93.75  85.72  86.81 

Cha + 3D 
Residual U-Net  

90.24  89.47  90.91  89.47  89.47  90.19 

Spa + 3D 
Residual U-Net  

90.24  84.21  95.45  94.12  88.89  89.65 

Cha-Spa + 3D 
Residual U-Net  

92.68  89.47  95.45  94.44  91.89  92.41 

Spa-Cha + 3D 
Residual U-Net  

92.68  89.47  95.45  94.44  91.89  92.41 

Cha represents channel attention mechanism and Spa represents spatial atten-
tion mechanism. Cha-Spa means the channel attention is performed before 
spatial attention while Spa-Cha is the opposite. Boldface indicates the best result 
in comparison. 
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performance of the model, although both made the accuracy of the 
original model increase to 90.24%. 

The channel attention mechanism helped the 3D ResUNet model 
reach a certain degree of balance in the prediction of AD and NC, while 
the spatial attention mechanism retained the high specificity as the 
original model, but improved the sensitivity. The combination of the two 
attention mechanisms, that is, the hybrid attention mechanism proposed 
herein, can integrate the advantages of the two attention mechanisms 
and enable the model to obtain the highest evaluation scores. Compared 
with the original model, the hybrid attention mechanism helped in-
crease accuracy, sensitivity, precision, F1 score and G-mean by 4.88%, 
10.52%, 0.94%, 6.17% and 5.60%, respectively. In addition, the 
experimental study found that the execution order of the two attention 
mechanisms did not significantly affect the classification performance of 
the model. The same results were obtained whether channel attention or 
spatial attention was performed first. If not specified, the subsequent 
hybrid attention strategy means that channel attention is performed 
before spatial attention. 

4.4. Results on ADNI dataset 

4.4.1. Methods of comparison 
In order to verify the effectiveness of the proposed 3D HA-ResUNet, 

we chose different representative and competitive methods for com-
parison: the machine learning classification models based on specific 
feature extraction methods, multilayer extreme learning machine 
methods and CNN-based methods, including the ResNet with different 
network depths. 

Feature extraction combined with machine learning: The clas-
sification models were constructed by specific feature extraction 
methods combined with machine learning classifier. According to the 
characteristics of brain MR image, we chose gray-based and texture- 
based methods to conduct feature extraction. As for gray-based 
method, gray histogram, gray mean, gray variance, gray contrast 
amplitude, gray energy, and gray entropy were selected as metrics. Local 
binary pattern (LBP) was chosen as the texture-based feature extraction 
method because of its advantages in capturing global texture changes 
and local gray changes. Conventional feature extraction methods are 
used to process 2D images. For 3D MR images, we extracted features 
from three slice direction, namely sagittal, coronal and axial plane, and 
integrated the features to better characterize the information in different 
dimensions of the data. Support vector machine (SVM) was chosen as 
the machine learning-based classifier for its generalization capability. 

Multilayer extreme learning machine: Multilayer extreme 
learning machine (ML-ELM) was proposed to accelerate the computa-
tional process of deep learning with its non-iterative and random feature 
mapping mechanism [44,45]. Among the ML-ELMs, stacked ELM 
autoencoder (ELM-AE) has the similar hierarchical structure as the deep 
neural network without tedious training, so it can quickly process high- 
dimensional features and obtain comparable generalization perfor-
mance. We chose ELM-AE as the classifier to combine with the above 
feature extraction methods. Furthermore, we also constructed ML-ELM 
for feature extraction and classification, which facilitates direct com-
parison with the end-to-end CNN-based methods. 

ResNet: ResNet (Deep Residual Networks) [12] proposes the resid-
ual learning unit, which applies identity mapping to solve the degra-
dation problem of deep network, so as to give full play to the advantages 
of deeper CNN. ResNet has structures of different depths, and we chose 
ResNet50 and ResNet18, i.e., ResNet with 49 and 17 convolutional 
layers. We further extended the network structures to 3D to process 3D 
MR images. 

4.4.2. Results and comparison 
The proposed 3D HA-ResUNet achieved good performance in the 

classification of AD and NC on the ADNI dataset. We also trained other 
competitive methods on the same dataset for further comparison and the 

results are listed in Table 3. 
As illustrated in Table 3, the proposed method got the highest ac-

curacy, specificity, precision, F1 and G-mean scores of 92.68%, 95.45%, 
94.44%, 91.89% and 92.41% respectively among all the competing 
methods. The sensitivity score of the proposed method ranked the sec-
ond, reaching 89.47%. ResNet, a frequent architecture in the literature, 
also showed strong competitiveness in this comparison. 3D ResNet18 
reached 90.24%, 89.47%, 90.91%, 89.47%, 89.47% and 90.19% in ac-
curacy, sensitivity, specificity, precision, F1 and G-mean metrics, 
respectively. However, 3D ResNet50, with deeper network structure 
(more convolutional layers), failed to demonstrate the classification 
performance matching its model scale. The reason is that the model has 
undergone severe overfitting on the ADNI dataset used in this study, i.e., 
the sample size in our experiment is still too small compared with the 
model parameters of 3D ResNet50, resulting in poor outcomes on the 
test set. The predictions of 3D ResNet50 show obvious bias with low 
sensitivity (68.42%), that is, the model tends to predict the sample as 
NC, resulting in a high false negative rate (FNR) of the result. 

The same phenomenon also occurred in the method of using gray 
features in three slice directions combined with SVM classifier. It has 
very low sensitivity (52.63%) but high specificity (95.45%), which will 
lead to serious underdiagnosis in practice. In contrast, the use of texture- 
based features like LBP provided better results overall, with high 
sensitivity (94.74%) but relatively low specificity (77.27%), which will 
increase the possibility of misdiagnosis in practice. However, when 
ELM-AE was used as the classifier, the results obtained by the gray 
features are overall better than those obtained by the LBP features. 
Similarly, whether the classifier is SVM or ELM-AE, gray features have a 
great probability of underdiagnosis (highest specificity, low sensitivity), 
while LBP features are more likely to lead to misdiagnosis (highest 
sensitivity, low specificity). 

The combination of gray-based and texture-based features seems to 
be a good option to improve the classification performance and alleviate 
the prediction bias. In particular, when ELM-AE combines the two types 
of features, it can achieve an overall performance comparable to 3D 
ResNet18 and second only to the proposed method. This indicates that 
machine learning techniques and ML-ELMs also have great potential in 
the classification of 3D structural MR images by extracting targeted 
features. 

Table 3 
Classification results of different methods on the ADNI dataset (AD vs. NC).  

Method ACC 
(%) 

SEN 
(%) 

SPE 
(%) 

PRE 
(%) 

F1 
(%) 

G-mean 
(%) 

Gray features +
SVM  

75.61  52.63  95.45  90.91  66.67  70.88 

Gray features +
ELM-AE  

87.80  78.95  95.45  93.75  85.72  86.81 

LBP features +
SVM  

85.37  94.74  77.27  78.26  85.72  85.56 

LBP features +
ELM-AE  

82.93  94.74  72.73  75.00  83.72  83.01 

Gray + LBP 
features + SVM  

87.80  89.47  86.36  85.00  87.18  87.90 

Gray + LBP 
features + ELM- 
AE  

90.24  94.74  86.36  85.71  90.00  90.45 

3D ML-ELM  87.80  89.47  86.36  85.00  87.18  87.90 
3D ResNet18  90.24  89.47  90.91  89.47  89.47  90.19 
3D ResNet50  82.93  68.42  95.45  92.86  78.79  80.81 
3D HA-ResUNet  92.68  89.47  95.45  94.44  91.89  92.41 

Gray features include gray histogram, gray mean, gray variance, gray contrast 
amplitude, gray energy, and gray entropy. LBP means local binary pattern. 
Support vector machine (SVM) is the machine learning classifier and ELM-AE is 
the classifier based on stacked extreme learning machine autoencoder. 3D ML- 
ELM is multilayer extreme learning machine for feature extraction and classi-
fication. 3D HA-ResUNet is the proposed 3D Residual U-Net with hybrid atten-
tion mechanism. Boldface indicates the best result. 

Z. Qin et al.                                                                                                                                                                                                                                      



Biomedical Signal Processing and Control 77 (2022) 103828

10

In many cases, accuracy and speed are often difficult to balance. 
Although the proposed 3D HA-ResUNet performs best on the ADNI 
dataset, its model also consumed the longest training time. In this 
experiment, the proposed model was trained 30 epochs, and each epoch 
took 190 s on average. The overall training time of the proposed model is 
slightly longer than 3D ResNet50, indicating the computational 
complexity of this deep CNN-based methods, especially when dealing 
with 3D data. As a comparison, the ML-ELM method does not require 
training parameters, and direct calculations can be performed for the 
input data, so it is fast, reflecting the characteristics of this type of 
method. Among them, ML-ELM took 14 s, ELM-AE took 158 s and SVM 
took 143 s. If the model training time is not considered, there is no 
significant difference in the time consumed by all methods for the pre-
diction of the test set. It is worth pointing out that the time consumption 
is relative, and the time required for computing varies on different 
computers. As long as the time consumption is within a reasonable 
range, considering the accuracy that the model can achieve, deep 
learning-based methods can still be a good option. 

4.4.3. Results on imbalanced dataset 
As a possible situation in practical application scenarios, class 

imbalance in datasets is a problem worthy of study. In the clinical 
application of AD diagnosis based on MR images, the number of diseased 
samples (AD) accumulated in hospitals is likely to be less than the 
number of normal samples (NC). We refer to the literature [46] and 
utilize the Imbalanced ration (IR) to measure the imbalance of the 
dataset: 

IR =
N+

N−

(16)  

where N+ denotes the number of positive samples in the dataset, which 
is the number of AD samples for the ADNI dataset in this study. And N−

denotes the number of negative samples, which is the number of NC 
samples. 

We used 100%, 80%, 50% and 30% of the AD samples to generate 
four levels of imbalanced datasets, i.e., IRs are 0.86, 0.68, 0.43 and 0.18, 
respectively. And the top 3 algorithms in Table 3 were compared here. 
As can be seen from Table 4, the proposed 3D HA-ResUNet shows 
obvious advantages when the class imbalance is not particularly severe, 
and even achieve a slight performance improvement over the original 
dataset (IR = 0.86) at 80% of the AD samples (IR = 0.68). As the pro-
portion of AD samples becomes smaller, the performance of the pro-
posed method starts to decrease. When IR is 0.18, although the accuracy 
is still high, the algorithm cannot well identify the AD samples in the test 
set. This is because there are fewer AD samples for model training, and 
the model does not fully learn the features that can identify AD well in 
the limited data. However, 3D ResNet18 exhibits superior classification 
ability when the IR value is small. ELM-AE method shows good stability 
in this comparison and maintains a good level of accuracy. In practical 

application, for severely imbalanced datasets, we can consider setting 
some class-specific regular parameters as in [46] and adding them to the 
original method to improve the model performance. 

4.5. Results on MCI dataset 

Mild cognitive impairment (MCI) is a state between normal aging 
and AD, with a high probability of eventual conversion to AD. The 
identification of different subtypes of MCI is a crucial issue in the early 
diagnosis of AD. We validated the clinical feasibility of the proposed 
method using MCI subjects collected from a local hospital. The advan-
tages of using the local MCI dataset are: First, local dataset is more in line 
with clinical scenario in terms of small sample size and data charac-
teristics compared to a large database like ADNI. Furthermore, local MCI 
subjects can be subdivided into amnestic MCI (aMCI), semantic MCI 
(sMCI) and other types of MCI (oMCI) based on neuropsychological 
assessment, which is beneficial to accurately predicting the progression 
from MCI to dementia. 

The proposed 3D HA-ResUNet performed well on MCI dataset. To 
avoid the contingency on small sample dataset, we set different test set 
proportions (15%, 20%, 25% and 30%) to observe the prediction per-
formance of the model on different test sets (refer to Table 5 for specific 
results). 3D HA-ResUNet accurately predicted aMCI and sMCI on 
different proportions of the test set, indicating that the proposed method 
is good at addressing this MCI subtype classification with a small sample 
size and has a satisfactory application prospect in clinic. According to 
our previous experiments, 3D ResNet18 also had an impressive classi-
fication performance on the ADNI dataset. Thus, it was selected for 
comparison on this dataset and it achieved good prediction results as 
well. However, when the proportion of the test set is small, the model 
overfitted, resulting in misclassification, which is not as robust as the 
proposed method overall. As indicated by the metric scores in Table 5, 
3D ResNet18 misclassified aMCI cases as sMCI at 15% and 20% of the 
test set ratio. Fig. 5 additionally provides an intuitive representation for 
comparing the performance of the two methods on different scale test 
sets: the proposed 3D HA-ResUNet maintained 100% prediction accu-
racy in all tests, while 3D ResNet18 produced fluctuations in prediction 
performance when the scale of test set was small. 

5. Discussion 

This section discusses the visual interpretability and broader per-
formance comparison of our proposed model. Section 5.1 visualizes the 
basis of the model for MCI subtype classification and interprets it in the 
context of brain anatomy. Section 5.2 compares the classification results 
of the proposed method with other state-of-the-art methods in the ADNI 
database. 

Table 4 
Classification results of different imbalanced ratios on the ADNI dataset (AD vs. NC).  

Imbalanced ratio Model ACC (%) SEN (%) SPE (%) PRE (%) F1 (%) G-mean (%) 

0.86 ELM-AE  90.24  94.74  86.36  85.71  90.00  90.45 
3D ResNet18  90.24  89.47  90.91  89.47  89.47  90.19 
3D HA-ResUNet  92.68  89.47  95.45  94.44  91.89  92.41 

0.68 ELM-AE  87.18  75.00  95.65  92.31  82.76  84.70 
3D ResNet18  92.31  87.50  95.65  93.33  90.31  91.48 
3D HA-ResUNet  94.87  87.50  100.00  100.00  93.33  93.54 

0.43 ELM-AE  87.88  80.00  91.30  80.00  80.00  85.46 
3D ResNet18  90.91  70.00  100.00  100.00  82.35  83.67 
3D HA-ResUNet  90.91  70.00  100.00  100.00  82.35  83.67 

0.18 ELM-AE  88.89  75.00  91.30  60.00  66.67  82.75 
3D ResNet18  100.00  100.00  100.00  100.00  100.00  100.00 
3D HA-ResUNet  88.89  25.00  100.00  100.00  40.00  50.00 

ELM-AE refers to the combination of ELM-AE classifier with Gray and LBP features. Boldface indicates the best result. 
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5.1. Visual interpretation 

There are two pivotal issues to be studied in the clinical application 
of AD auxiliary diagnosis based on deep learning methods: one is the 
demand for high accuracy of the deep learning model; the other is the 
interpretability of the model, providing an interaction with domain 
knowledge. Unlike natural images, brain MR images depict the complex 
tissues and structures of the brain and therefore require visual inter-
pretability methods to be both category-discriminative and capable of 
exhibiting fine-grained brain details. Attribution-based interpretability 
is able to present visual interpretation of inferences from deep learning 
networks, which can be well integrated with MRI-based classification 
process and meet the needs of most clinical diagnosis scenarios. In 
Section 4.5, the proposed 3D HA-ResUNet shows superior performance 
on the local MCI dataset, and we have made an attempt to observe the 
features of concern for the model to make decisions by means of the 
visual interpretability method mentioned in Section 3.3. For a random 
sample input of the MCI dataset, the importance of each voxel in the 
input 3D image to the prediction can be deduced according to the pre-
diction category of the proposed model: the saliency map can be 
calculated from the gradient information of the last convolutional layer 
of the networks. Fig. 6 and Fig. 7 display the regions of attention of the 
proposed model’s last convolutional layer for the inputs of aMCI and 

sMCI respectively. 
In order to deliver a better visualization of the generated 3D saliency 

maps, we displayed slices from coronal, sagittal and axial planes sepa-
rately. The significant regions and corresponding features of the data are 
activated with high pixel values in the saliency map, so they are white 
contours and textures on the slices. Fig. 6 is a visualization of aMCI data 
input, from Fig. 6 (a) we can see that the upper contours of the coronal 
plane are the key activation regions, and from the detailed magnified 
image we further know that these regions mainly include the frontal 
lobe and parietal lobe. It should be noted that the highlighted white or 
black areas on the slices are artifacts rather than valid activation fea-
tures. On the sagittal slices, parietal lobe and occipital lobe are the key 
regions for the model’s decision making and corpus callosum as well as 
its surrounding areas was also activated in specific slices. And the acti-
vated region presented on the axial slices is an external circle of con-
tours, mainly concentrated in the regions such as cuneus, superior 
parietal lobule, angular gyrus and so on. We can conclude from the 
respective display of slices from three directions that the proposed 3D 
HA-ResUNet focused on the parietal lobe, occipital lobe and part of 
frontal lobe of aMCI samples, so as to extract key features for classifi-
cation. According to the study of Li et al. [47], aMCI is significantly 
correlated with white matter volumes in the areas of frontal, parietal 
and occipital lobes. 

Table 5 
Classification results of different proportions of test sets on the local MCI dataset (aMCI vs. sMCI).  

Proportion of test set Model ACC (%) SEN (%) SPE (%) PRE (%) F1 (%) G-mean (%) 

15% 3D ResNet18  92.86  85.71  100.00  100.00  92.31  92.58 
3D HA-ResUNet  100.00  100.00  100.00  100.00  100.00  100.00 

20% 3D ResNet18  88.89  77.78  100.00  100.00  87.50  88.19 
3D HA-ResUNet  100.00  100.00  100.00  100.00  100.00  100.00 

25% 3D ResNet18  100.00  100.00  100.00  100.00  100.00  100.00 
3D HA-ResUNet  100.00  100.00  100.00  100.00  100.00  100.00 

30% 3D ResNet18  100.00  100.00  100.00  100.00  100.00  100.00 
3D HA-ResUNet  100.00  100.00  100.00  100.00  100.00  100.00  

Fig. 5. Test accuracy, sensitivity, F1 score and G-mean of the model with different test set proportions on MCI dataset. The proposed 3D HA-ResUNet remained 100% 
for the metrics while 3D ResNet18’s performance fluctuated when the proportion was small. 
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Fig. 6. Visualization of model decision features under aMCI sample input. A random sample from aMCI was fed into the trained 3D HA-ResUNet model. The regions 
of attention in the 3D saliency maps of the model’s last convolutional layer were generated by the 3D Guided Grad-CAM method. Left side demonstrates the original 
slices from different directions and the right side shows the corresponding Guided Grad-CAM visualizations. For the Guided Grad-CAM images, the activated features 
have high pixel values, so they are white contours and textures on the images. (a) Slices and Guided Grad-CAM images of 3D MR images on coronal plane. Superior 
frontal gyrus and parietal lobe were significantly activated. (b) Slices and Guided Grad-CAM images of 3D MR images on sagittal plane. Parietal lobe and occipital 
lobe were significantly activated and corpus callosum also appeared in some slices. (c) Slices and Guided Grad-CAM images of 3D MR images on axial plane. 
Activation regions included cuneus, superior parietal lobule, angular gyrus and so on. 
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Fig. 7. Visualization of model decision features 
under sMCI sample input. A random sample from 
sMCI was fed into the trained 3D HA-ResUNet 
model. The regions of attention in the 3D sa-
liency maps of the model’s last convolutional 
layer were generated by the 3D Guided Grad- 
CAM method. (a) Slices and Guided Grad-CAM 
images of 3D MR images on coronal plane. Su-
perior frontal gyrus and parietal lobe were 
significantly activated. (b) Slices and Guided 
Grad-CAM images of 3D MR images on sagittal 
plane. Frontal lobe and parietal lobe were 
significantly activated, corpus callosum and 
fornix were also activated in certain slices. (c) 
Slices and Guided Grad-CAM images of 3D MR 
images on axial plane. Activation regions 
included cuneus, angular gyrus, lateral ventricle 
and so on.   

Z. Qin et al.                                                                                                                                                                                                                                      



Biomedical Signal Processing and Control 77 (2022) 103828

14

As for a random sample from sMCI subtype, Fig. 7 depicts the region 
of interest for the model to make a prediction. On the whole, the regions 
of attention of the model for sMCI sample are similar to those of aMCI, 
including partial frontal lobe and parietal lobe on coronal slices, parietal 
lobe and corpus callosum on sagittal slices, cuneus and angular gyrus on 
axial slices, etc. The difference is that the saliency maps of sMCI appear 
to contain richer activations, such as lateral ventricle and its surround-
ing areas (shown on both coronal and axial slices), and more parts like 
supramarginal gyrus, posterior central gyrus, anterior central gyrus are 
activated on axial slices. In addition, more frontal areas are activated on 
sagittal slices for the sMCI sample, while more occipital areas for the 
aMCI sample. For the same activated regions of aMCI and sMCI, we 
suppose that the model is able to extract discriminative features (like 
tissue volume, cortical thickness, depth of sulcus and gyrus, etc.) from 
these regions. For example, angular gyrus, known as the visual language 
center, is highly correlated with semantic processing [48,49], extracting 
features from this region may be conducive to distinguishing sMCI. And 
the different regions presented on sMCI can be considered as some 
supplementary information captured by the model, such as the lateral 
ventricle, central sulcus and regions around them, which may provide 
additional decision-making features. 

The above visual interpretation process manifests the regions and 
features that the deep learning model focuses on for classification, 
making the model more transparent to a certain extent. This visual 
interpretation can be well integrated with the professional knowledge of 
medical experts because of its semantic and attribute explanations. It 
can not only provide a valuable reference for physicians’ clinical 
decision-making, but also inspires physicians to further conduct multi- 
modal and multi-analytic research for specific ROIs. 

5.2. Comparison with state-of-the-art methods 

The proposed 3D HA-ResUNet is compared with other state-of-the- 
art methods using the ADNI database in recent literature to acquire a 
broad perspective on the level of the proposed method in the research 
field of AD computer-aided diagnosis based on MR images. These SOTA 
methods can be divided into two categories: with or without attention 
mechanism. The methods without attention mechanism screened in the 
literature include Marginal Fisher Analysis based on multi-kernel 
learning (MKMFA) [50], ensemble of multiple CNN models (Multi- 
CNNs) [51], 3D plain and residual CNNs (VoxResNet) [15], multi- 
modality cascaded CNNs (Cascaded CNNs) [52], hierarchical fully 
convolutional network (H-FCN) [53] and multi-model deep learning 
framework (multi-model CNNs) [17]. The methods combined with 
attention mechanism include 3D ResNet with spatial attention (3D 
ResNet) [27], task-driven hierarchical attention network (THAN) [29] 
dual attention multi-instance deep learning network (DA-MIDL) [54]. 
Details are listed in Table 6. 

It should be emphasized that, although all methods were trained and 
tested on the ADNI database, the exact dataset parameters such as im-
aging equipment, scanning parameters, sample size, etc., and the 
training process of the models used in each literature are different. 
Therefore, the results are only used for the comparison of relative levels 
between methods, and the numbers do not represent the absolute su-
periority or inferiority. Overall, the proposed 3D HA-ResUNet is very 
competitive in comparison with the SOTA results recorded in the liter-
ature. Only from the value of each metric, the proposed 3D HA-ResUNet 
ranks second in terms of accuracy and specificity among all listed 
methods. In fact, 3D Cascaded CNNs [52], which ranks first in accuracy, 
utilized two modality neuroimaging data (MRI and PET) for training. Its 
accuracy is less than 93.26% when using MR images only, which means 
that our method achieves a high level of accuracy compared with other 
SOTA methods. Throughout the trends revealed in the literature studies, 
the use of model ensemble and multimodal data is instrumental in 
improving the performance of early diagnosis of AD based on neuro-
imaging [51–53,17]. Additionally, the attention mechanism shows great 

potential, and the algorithms in Table 6 that incorporate the attention 
mechanism have all achieved superior results. Jin et al. [27] introduced 
spatial attention to 3D ResNet architecture and Zhang et al. [29] devised 
visual and semantic attention modules in the hierarchical attention sub- 
network. Zhu et al. [54] constructed a dual attention framework, 
including spatial attention block and attention-based multi-instance 
learning pooling operation. As a comparison, we also proposed a hybrid 
attention strategy, combining channel and spatial attentions, and 
experimentally verified that the integration of channel and spatial at-
tentions can fully exploit the advantages of both. 

6. Conclusion 

In this study, a 3D Residual U-Net model incorporating hybrid 
attention mechanism (3D HA-ResUNet) is proposed for early diagnosis 
of AD based on 3D MR images. The characteristics and innovations of 
this study are summarized as follows:  

(1) The backbone 3D CNN model contains up-sampling and down- 
sampling branch networks and intermediate connection resid-
ual blocks, which has both excellent classification performance 
and a good foundation for model interpretability.  

(2) The hybrid attention mechanism combines the advantages of 
efficient channel attention and spatial attention, and can be 
applied to the skip connection of the proposed classification 
model to further improve the performance. 

(3) A visual interpretability method based on attribution and se-
mantic explanations is employed to reveal the regions and fea-
tures that the proposed model focuses on for classification. 

Compared with different representative methods, the proposed 3D 

Table 6 
Comparison with state-of-the-art methods using ADNI database.  

Reference Method Attention Number 
of 
samples 

AD vs. NC (%) 

ACC SEN SPE 

Cao et al., 
2017  
[50] 

MKMFA No AD-192, 
NC-229  

88.60  85.70  90.40 

Cheng 
et al., 
2017  
[51] 

3D Multi- 
CNNs 

No AD-199, 
NC-229  

87.15  86.36  85.93 

Korolev 
et al., 
2017  
[15] 

3D 
VoxResNet 

No AD-50, 
NC-61  

80.00  –  – 

Liu et al., 
2018  
[52] 

3D 
Cascaded 
CNNs 

No AD-93, 
NC-100  

93.26  92.55  93.94 

Lian et al., 
2018  
[53] 

H-FCN No AD-358, 
NC-429  

90.30  82.40  96.50 

Liu et al., 
2020  
[17] 

Multi- 
model 
CNNs 

No AD-97, 
NC-119  

88.90  86.60  90.80 

Jin et al., 
2019  
[27] 

3D ResNet Spatial AD-227, 
NC-305  

92.10  89.00  94.40 

Zhang 
et al., 
2021  
[29] 

THAN Hierarchical AD-327, 
NC-416  

92.00  90.30  93.10 

Zhu et al., 
2021  
[54] 

DA-MIDL Dual AD-398, 
NC-400  

92.40  91.00  93.80 

Proposed 3D HA- 
ResUNet 

Hybrid AD-98, 
NC-114  

92.68  89.47  95.45 

According to Korolev et al. [21], SEN and SPE values were not reported in their 
article. 

Z. Qin et al.                                                                                                                                                                                                                                      



Biomedical Signal Processing and Control 77 (2022) 103828

15

HA-ResUNet demonstrates superior generalization ability in both tasks 
of AD vs. NC on ADNI dataset and MCI subtype classification on local 
dataset. From the related research of AD computer-aided diagnosis 
based on MR images, the proposed method is also very competitive with 
other state-of-the-art methods. Furthermore, the visual interpretations 
can be well integrated with the domain knowledge of medical experts, 
making the proposed method easier to be comprehended and clinically 
popularized. 

The visual interpretability approach used in this article is post-hoc, 
that is, retrospecting the saliency maps of the trained model based on 
the input. Future work will focus on more comprehensive interpret-
ability techniques, which are able to actively participate in the inference 
process of different components of the deep learning model, and inte-
grate more closely with the biomarker research of AD diagnosis. 
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